Математическая экономика как наука статья. Сборник задач по курсу математическая экономика. Сущность математической экономики

29.04.2024 Долги 

Магнитогорск 2005

Сборник задач по курсу «Математическая экономика». - Магнитогорск: МаГУ, 2005. – 184 с.

В сборнике дан обзор ключевых категорий и положений, используемых в курсе «Математическая экономика». Представлены примеры решения типовых задач, приведены вопросы для самопроверки по изучаемому материалу. Материалы пособия могут быть использованы в курсах «Финансовая математика», «Математические методы финансового анализа», «Финансовый менеджмент», «Финансовый анализ» и др.

Работа ориентирована на преподавателей, аспирантов и студентов очного и заочного отделения, научным и практическим работникам, специализирующимся в области управления финансами и инвестиционными проектами, применения математических методов и моделей в исследования экономических систем и явлений.

Составители. Г.Н. Чусавитина,

В.Б. Лапшина.

 Чусавитина Г.Н., Лапшина В.Б. 2005

 Магнитогорский государственный университет, 2005

ВВЕДЕНИЕ 5

Глава 1 простые проценты 7

1.1. Определение ставок и вычисление процентов 7

1.2. Простая процентная ставка 10

1.3. Простая учетная ставка 21

1.4. Погашение кредита и амортизационные отчисления 32

1.5. Вычисление средних значений 41

1.6. Валютные расчеты 48

1.7. Налог на прибыль 53

1.8. Инфляция 56

1.9. Замена и консолидация платежей 64

Глава 2 СЛОЖНЫЕ ПРОЦЕНТЫ 73

2.1. Сложная процентная ставка 73

2.2. Сложная учетная ставка 91

2.3. Непрерывная ставка 101

2.4. Эквивалентность ставок 107

2.5. Инфляция и начисление сложных и непрерывных процентов 112

2.6. Замена платежей и сроков их выплат 125

Глава 3 АННУИТЕТЫ 132

3.1. Постоянный аннуитет 132

3.2. Непрерывный и переменный аннуитеты 148

3.3. Оценка аннуитета с периодом больше года 157

ВВЕДЕНИЕ

«Математическая экономика» - это название дисциплины, придуманное математиками. Экономистам больше нравится другое название –«Экономико-математические модели и методы». В учебных программах и стандартах экономических факультетов часто встречается именно такое название. На наш взгляд, эти два названия одинаково точно передают внутреннее содержание предмета, где гармонично сочетаются экономические и математические аспекты. К сожалению, на практике часто программа курса ЭММиМ целиком составляется из отдельных разделов "Исследования операций и математического программирования", которые, во-первых, уже были пройдены до этого курса, во-вторых, содержат математические модели принятия решений и оптимизации, а не экономико-математические модели как таковые.

Математическая экономика - это наука, которая использует математический аппарат в качестве метода исследования экономических систем и явлений.

Таким образом, объектом изучения (или предметной областью) математической экономики является экономика - как часть бытия или часть обширной области человеческой деятельности.

Как и другие науки, изучающие экономику в целом или ее составные части, математическая экономика пользуется определенной методологией и имеет свою специфику. Специфика математической экономики, ее методологическая особенность заключается в том, что она изучает не сами экономические объекты и явления как таковые, а их математические модели. Ее цель- получение объективной экономической информации и выработка имеющих важное практическое значение рекомендаций. Формально математическую экономику можно отнести как к экономической, так и к математической наукам. В первом случае ее следует понимать как тот раздел экономики, который изучает количественные и качественные категории, а также поведенческие аспекты экономических субъектов. Считая же математическую экономику одним из направлений математики, можно отнести ее к тем разделам прикладной математики, которые занимаются оптимизационными задачами и задачами принятия решения

По своей природе экономика - самая близкая к математике социальная наука. Уже в определении самого понятия экономики, ее главных задач можно увидеть математические понятия и терминологию.

Действительно, экономика - это общественная наука об использовании ограниченных ресурсов с целью максимального удовлетворения неограниченных материальных потребностей населения. Центральные проблемы экономической науки - рациональное ведение хозяйства, оптимальное распределение ограниченных ресурсов, изучение экономических механизмов управления, разработка методов экономических расчетов - по существу являются задачами, решаемыми в рамках математических наук. Количественные и качественные методы математики являются наилучшим вспомогательным аппаратом для получения ответов на основные вопросы экономики:

    что должно производиться (т. е. какие товары и услуги и в каком количестве надо производить)?

    как будут производиться товары (т. е. кем и с помощью каких ресурсов и какой технологии)?

    для кого предназначены эти товары (т.е. кем и как будут потребляться эти товары)?

Наконец, задача экономической теории, связанная с приведением в систему, истолкованием и обобщением поведения участников экономики в процессе производства, обмена и потребления, восходит к математическим проблемам оптимизации и принятия решения.

С учетом сказанного выше можно говорить о следующих основных задачах, стоящих перед математической экономикой:

    разработка математических моделей экономических объектов, систем и явлений (общих и частных задач экономики при различных условиях, предпосылках и на различных уровнях);

    изучение поведения участников экономики (условий существования оптимальных решений и их признаков, а также методов их вычисления в моделях потребления, фирмы, совершенной и несовершенной конкуренции и др.);

    изучение описательных моделей экономики (модели планирования, "затраты - выпуск", расширяющейся экономики, экономики благосостояния и роста и др.);

    анализ экономических величин и статистических данных (эластичности, средних и предельных величин, регрессионный и корреляционный анализ и прогнозирование экономических факторов и показателей).

В сборнике дан обзор ключевых категорий и положений, используемых в курсе «Математическая экономика». Представлены примеры решения типовых задач, приведены вопросы для самопроверки по изучаемому материалу. Материалы пособия могут быть использованы в курсах «Финансовая математика», «Математические методы финансового анализа», «Финансовый менеджмент», «Финансовый анализ» и др.

Работа ориентирована на преподавателей, аспирантов и студентов очного и заочного отделения, научным и практическим работникам, специализирующимся в области управления финансами и инвестиционными проектами, применения математических методов и моделей в исследования экономических систем и явлений.

Основная цель экономики - обеспечение общества предметами потребления. В экономике действуют устойчивые количественные закономерности, поэтому возможно их формализованное математическое описание.

Объект изучения учебной дисциплины - экономика и ее подразделения.

Предмет - математические модели экономических объектов.

Метод - системный анализ экономики как сложной динамической системы.

Модель - это объект, который замещает оригинал, отражает наиболее важные для данного исследования черты и свойства оригинала.

Модель, представляющая собой совокупность математических соотношений, называется математической .

ЭЛЕМЕНТЫ МОДЕЛИРОВАНИЯ

Система - это совокупность взаимосвязанных элементов, совместно реализующих определенные цели.

Надсистема - окружающая систему среда, в которой функционирует система.

Подсистема - подмножество элементов, реализующих цели, согласованные с целями системы (подсистема может осуществлять часть целей системы).

Экономическая система: размешает ресурсы, производит продукцию, распределяет предметы потребления и осуществляет накопление.

Надсистема национальной экономики - природа, мировая экономика и общество.

Главные подсистемы экономики - производственная и финансово-кредитная.

ОСОБЕННОСТИ ЭКОНОМИКИ КАК ОБЪЕКТА МОДЕЛИРОВАНИЯ

В экономике невозможны модели подобные техническим, т.к. нельзя построить точную копию, экономики и на этой копии отрабатывать варианты экономической политики.

В экономике ограничены возможности экспериментов, поскольку все ее части жестко взаимосвязаны друг с другом.

Прямые эксперименты с экономикой имеют как положительную, так и отрицательную стороны.

Положительная сторона - сразу видны краткосрочные результаты проводимой экономической политики.

Отрицательная сторона - невозможно напрямую предвидеть средне- и долгосрочные последствия принимаемых решений,.

Таким образом, для выработки правильных экономических решений необходим учет как всего прошлого опыта, так и результатов, полученных в расчетах по математическим моделям, адекватным данной экономической ситуации.

Разработка математических моделей трудоемка, но весьма перспективна. Так, модель Кейнса, отражающая возможности рыночной экономики адаптироваться к возмущающим воздействиям, была построена под впечатлением кризиса 1929-1933 гг. Однако применение этой модели для выхода из послевоенного кризиса в Германии и Японии было весьма успешным и получило название «экономического чуда».

РАССМОТРИМ СТРУКТУРУ ЭКОНОМИКИ КАК ОБЪЕКТА МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ

Экономика - сложная система, состоящая из производственных и непроизводственных (финансовых) ячеек (хозяйственных единиц), находящихся в производственно - технологических и (или) организационно-хозяйственных связях друг с другом.

По отношению к экономической системе каждый член общества выступает в двоякой роли: с одной стороны, как потребитель, а с другой - как работник.

Кроме рабочей силы, материальными ресурсами являются природные ресурсы и средства производства

Все отрасли материального производства создают валовой внутренний продукт (ВВП).

В натурально-вещественной форме ВВП – это средства труда и предметы потребления,

В стоимостной форме - фонд возмещения выбытия основных фондов (амортизационный фонд) и вновь созданную стоимость (национальный доход).

В процессе создания ВВП производится и вновь потребляется промежуточный продукт.

По материально-вещественному составу промежуточный продукт - это предметы труда, использованные для текущего производственного потребления, их стоимость целиком переходит в стоимость средств труда или предметов потребления, входящих в ВВП.

ИСПОЛЬЗОВАНИЕ МАТЕМАТИКИ В ЭКОНОМИКЕ ПОЗВОЛЯЕТ:

1. выделить и формально описать наиболее важные связи экономических переменных и объектов;

2. получить новые знание об объекте;

3. оценить вид зависимостей факторов и параметры переменных, сделать выводы.

ЧТО ТАКОЕ ЭКОНОМИКО-МАТЕМАТИЧЕСКАЯ МОДЕЛЬ?

Это упрощенное формальное описание экономических явлений.

Математическая модель экономического объекта это его отображение в виде совокупности уравнений, неравенств, логических отношений, графиков.

Модели позволяют выявить особенности функционирования экономического объекта и на этой основе предсказать поведение объекта в будущем при изменении параметров.

ЭТАПЫ ПОСТРОЕНИЯ МОДЕЛИ:

1. формулируются предмет и цели исследования;

2. в экономической системе выделяются структурные или функциональные элементы, соответствующие данной цели;

3. выявляются наиболее важные качественные характеристики этих элементов;

4. словесно, качественно описываются взаимосвязи между элементами;

5. вводятся символические обозначения для характеристик экономического объекта и формулируются взаимосвязи между ними;

6. проводятся расчеты по модели и анализируются полученные результаты;

СТРУКТУРА МОДЕЛИ:

Для построения модели нужно определить экзогенные и эндогенные переменные и параметры.

Экзогенные переменные – задаются вне модели, т.е. известны к моменту расчетов.

Эндогенные переменные – определяются в ходе расчетов по модели.

Параметры – коэффициенты уравнений.

КЛАССЫ ЭКОНОМИКО-МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ

Экономико-математические модели делятся на следующие классы:

1. По уровню обобщения

a. Макроэкономические – описывают экономику как единое целое, связывают укрупненные показатели: ВВП, потребление, инвестиции, занятость. Макромодели отражают функционирование и развитие всей экономической системы или ее достаточно крупных подсистем. В макромоделях хозяйственные ячейки считаются неделимыми.

b. Микроэкономические – описывают взаимодействие структурных и функциональных составляющих экономики. Микромодели - функционирование хозяйственных единиц и их объединений. В микромоделях хозяйственная единица может рассматриваться как сложная система.

2. По уровню абстракции

a. Теоретические – позволяют изучить общие свойства экономики путем вывода из формальных предпосылок. Используются для изучения общих свойств экономики и ее элементов (модели спроса и предложения)

b. Прикладные – дают возможность оценить параметры функционирования конкретного экономического объекта и выработать рекомендации по принятию решений. Используются для оценки параметров конкретных экономических объектов. Сюда относятся эконометрические модели, применяющие методы математической статистики.

3. Модели равновесные и роста

a. Равновесные – дескриптивные (описательные) модели. Они описывают такое сотояние экономики, когда результирующая всех сил, стремящихся вывести экономику из этого состояния равна нулю. Пример - модель Леонтьева (затраты-выпуск),

b. Модели роста – предназначены для определения того как должна развиваться экономика при определенных критериях. Пример – Модель Солоу, Самуэльсона-Хикса

4. По учету фактора времени.

a. Статические – описывают состояние объекта в конкретный момент или период времени.

b. Динамические – включают взаимосвязи переменных во времени. Обычно используют аппарат дифференциальных уравнения.

5. По учету фактора случайности.

a. Детерминированные – предполагают жесткие функциональные связи между переменными модели.

b. Стохастические – допускают случайные воздействия на показатели и используют теорию вероятностей и математическую статистику.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Что такое экономико-математическое моделирование? Его место в экономическом анализе и прогнозировании.

2. Этапы моделирования. Факторы модели.

3. Классы экономико-математических моделей .

Цели и задачи изучения темы

Введение в математическую экономику

1. Предмет и задачи математической экономики

2. Математическое моделирование экономических систем

3. Примеры экономических задач оптимизации и управления

4. Общая схема принятия решений. Виды и параметры экономических задач оптимизации и управления

5. Оптимальное поведение и его формализация в экономико-математических моделях

Математическая экономика (эконометрика, экономико-математическое моделирование) - сфера научной и практической деятельности, целью которой является математически формализованное описание экономических объектов, процессов и явлений.

Математическая экономика – дисциплина, которая занимается изучением экономики, экономических процессов и их моделей.

Предмет математической экономики – это математические модели реальных экономических объектов.

Метод математической экономики – системный анализ экономики как сложной динамической системы.

Модель – объект, который замещает оригинал и отражает важные для данного исследования черты и свойства оригинала.

Система – это совокупность взаимосвязанных элементов, совместно реализующих определенные цели.

Надсистема – окружающая систему среда, в которой эта система функционирует.

Подсистема – подмножество элементов, реализующих цели, согласованные с целями системы.

Основная цель экономики – это обеспечение общества предметами потребления. Экономика состоит из хозяйственных единиц: предприятия, фирмы, банки и т.д. Надсистемой национальной экономики является природа, общество и мировая экономика. Подсистема состоит из следующих частей: производственная сфера и финансово-кредитная.

Особенности экономики как объекта моделирования состоят в следующем:

· модели в экономике не соответствуют техническим моделям, когда можно построить материальный объект и отработать все функции поведения, копию экономического процесса построить нельзя;

· в экономике ограничены возможности локальных экономических экспериментов, так как все ее части жестко взаимосвязаны между собой, поэтому чистый эксперимент не возможен. То есть гипотезы развития экономических явлений основываются на аналогичных явлениях, которые происходили ранее, и на математическом моделировании. Например, модель Кейса выхода экономики из кризиса 1929-1939 гг. была применена в Германии и Японии и получила название «экономического чуда».

Чтобы выработать правильное экономическое решение, необходимо учесть прошлый опыт и результаты построения экономических моделей в аналогичных ситуациях.

· при выполнении основной функции экономическая система осуществляет следующие действия:


Размещает ресурсы;

Производит продукцию;

Распределяет предметы потребления;

Осуществляет накопление.

Рассмотрим схему функционирования экономики:

В процессе производства создается ВВП, который распределяется между всеми ячейками экономики или общества.

Процесс производства предполагает наличие в нем средств и предметов труда. Средства труда участвуют в нескольких производственных циклах, вплоть до полного износа морального или физического, или их замены. Предметы труда участвуют в одном производственном цикле. В некотором случае земля является средством производства, если земля не освоена, то она является природным ресурсом или предметом труда.

Процесс накопления сопровождается созданием накопленных средств производства, которые подразделяют на основные (средства труда) и оборотные (предметы труда).

Основные производственные фонды в течение длительного времени обслуживают свою форму и в меру изнашивания учитываются в образовании стоимости производимого в данном году продукта.

Просто воспроизводство осуществляется за счет амортизационных отчислений. Расширенное – за счет капитальных вложений и частично за счет амортизационного фонда.

Оборотные фонды – предметы труда, находящиеся в процессе производства. Состоят из производственных запасов и предметов труда, которые входят в незавершенную продукцию.

В результате функционирования экономики за год все отрасли материального производства создают ВВП. В натурально-вещественной форме ВВП распадается на средства труда и предметы потребления. В стоимостной форме – на фонд возмещения выбывших основных фондов (амортизационный фонд) и вновь созданную стоимость (национальный продукт).

В процессе создания ВВП производственная подсистема производит и вновь потребляет промежуточный продукт (предметы труда, которые используются для текущего производственного потребления, их стоимость целиком переходит в стоимость средств труда или предметов потребления, входящих в ВВП).

Валовой выпуск применяется в качестве вспомогательного показателя, который содержит в себе стоимость ВВП и промежуточного продукта, при этом стоимость предметов труда учитывается дважды в промежуточном продукте и ВВП.

МАТЕМАТИЧЕСКАЯ ЭКОНОМИКА

Математическая дисциплина, предметом к-рой являются модели экономич. объектов и процессов и методы их исследования. Однако понятия, результаты, методы М. э. удобно и принято излагать в тесной связи с их экономич. происхождением, интерпретацией и практич. приложениями. Особенно существенна связь с экономич. наукой и практикой.

М. э. как часть математики начала развиваться только в 20 в. Ранее были лишь эпизодпч. исследования, к-рые.нельзя в строгом смысле отнести к математике.

Особенности экономико-математического моделирования. Особенность экономич. моделирования состоит в исключительном разнообразии и разнородности предмета моделирования. В экономике присутствуют элементы управляемости и стихийности, жесткой определенности и существенной неоднозначности и свободы выбора, процессы технич. характера и социальные процессы, где на первый план выдвигается поведение человека. Разные уровни экономики (напр., цех и народное хозяйство) требуют существенно различного описания. Все это приводит к большой разнородности моделей математич. аппарата. Тонким вопросом является отражения типа социально-экономич. системы, к-рая моделируется, учет общественного строя. Нередко оказывается, что абстрактная математич. того или иного экономич. объекта или процесса с успехом применима и к капиталистической, и к социалистической экономике. Все дело в способе использования, интерпретации результатов анализа.

Производство, эффективное производство. Экономика имеет дело с благами, или продуктами, к-рые понимаются в М. э. чрезвычайно широко. Для них применяется общий термин ингредиенты. Ингредиентами являются услуги, природные ресурсы, отрицательно воздействующие на человека факторы окружающей среды, комфортности от имеющейся системы безопасности и т. д. Обычно считается, что ингредиентов конечно и продуктов есть - евклидово пространство, где l - число ингредиентов. Точка z из при надлежащих условиях может рассматриваться как "производственный" способ, положительные компоненты указывают объемы выпуска соответствующих ингредиентов, а отрицательные - затраты. Слово "производственный" взято в кавычки, поскольку производство понимается в самом широком смысле. Множество наличных (заданных, существующих) производственных возможностей есть Способ производства эффективен, если не существует такой, что и хотя бы для одной компоненты выполняется строгое . Задача выявления эффективных способов - одна из важнейших в экономике. Обычно предполагается, и это во многих случаях хорошо согласуется с действительностью, что Z - выпуклый . С помощью расширения пространства продуктов задача анализа эффективных способов при этом может быть сведена к случаю, когда Z - выпуклый замкнутый .

Типичной задачей выявления эффективного способа является основная задача произведственного планирования. Задано производственных способов и вектор потребностей и ресурсных ограничений Требуется найти способ такой, что для всех Если Z - выпуклый замкнутый конус, то это есть общая задача выпуклого программирования. Если Zзадан конечным числом образующих (так наз. базисных способов), то это общая задача линейного программирования. Решение лежит на границе Z. Пусть p - коэффициенты опорной гиперплоскости для Z в точке т. е. для всех и Основная выпуклого программирования находит условия, при к-рых p l >0. Напр., достаточно условия: существует вектор (так наз. условие Слейтера). Коэффициенты я, характеризующие эффективный способ имеют важный экономич. смысл. Они интерпретируются как цены, соизмеряющие эффективность затрат и выпуска отдельных ингредиентов. Способ эффективен тогда и только тогда, когда стоимость выпуска, равна стоимости затрат. Данная эффективных способов производства и их характеризации с помощью p оказала революционизирующее влияние на теорию и практику планирования социалистич. экономики. Она легла в основу объективных количественных методов определения цен и общественных оценок ресурсов, дающих возможность выбора наиболее эффективных экономич. решений в условиях социалистич. хозяйства. Теория естественным образом обобщается на бесконечное число ингредиентов. Тогда пространство ингредиентов оказывается подходящим образом выбранным функциональным пространством.

Эффективный рост. Ингредиенты, относящиеся к разным моментам или интервалам времени, формально можно считать различными. Поэтому описание производства в динамике в принципе укладывается в изложенную выше схему, состоящую из объектов {X, Z , b} , где X - пространство ингредиентов, Z - множество производственных возможностей, b - задания требований и ограничений на экономику. Однако изучение собственно динамич. аспекта производства требует более специальных форм описания производственных возможностей.

Производственные возможности достаточно общей модели экономич. динамики задаются с помощью точечно-множественного отображения (многозначной функции) Здесь - (фазовое) пространство экономики, интерпретируется как состояние экономики в тот или иной времени, где х k - количество продукта k, имеющегося в наличии в этот момент. Множество а(х).состоит из всех состояний экономики, в к-рые она может перейти за единичный временной из состояния х. Будем называть

графиком отображения а. Точки ( х, у ).- допустимые производственные процессы.

Рассматриваются различные варианты задания возможных траекторий развития экономики. В частности, потребление населения учитывается либо в самом отображении я, либо выделяется в явном виде. Напр., во втором случае допустимой траекторией является такая, что

Для всех t. Изучаются различные понятия эффективности траекторий. Траектория эффективна по потреблению, если не существует другой допустимой траектории (X, С ), выходящей из того же начального состояния, для к-рой Траектория внутренне эффективна, если не существует другой допустимой траектории (X, С), выходящей из того же начального состояния, момента времени t 0 и числа l>1, что

Оптимальность траектории обычно определяется в зависимости от функции полезности и коэффициента приведения полезности во времени (о функции полезности см. ниже). Траектория наз. (и, m)-о птпмальной, если

для любой допустимой траектории (X, С ), выходящей из того же начального состояния. Имеется довольно общих теорем существования для соответствующих траекторий.

Эффективные в различных смыслах траектории характеризуются последовательностью цен точно так же, как эффективный способ характеризовался ценами (коэффициентами опорной гиперплоскости) п. Т. е. если для эффективного способа стоимость затрат равна стоимости выпуска в оптимальных ценах, то на эффективной траектории стоимость состояний постоянна и максимальна, а на всех других допустимых траекториях не может возрастать.

Все приведенные определения легко обобщаются на случай, когда производственное а, функция ии m зависят от времени. Само время может быть непрерывным или вообще параметр tможет пробегать множество довольно произвольного вида.

С экономич. точки зрения интерес представляют траектории, на к-рых достигается максимально возможный темп роста экономики, к-рый она может выдержать сколь угодно долго. Оказывается, что при неизменных во времени а и и такие траектории являются стационарными, т. е. имеют

где а - темп роста (расширения) экономики. Стационарные эффективные в том или ином смысле, а также стационарные оптимальные траектории наз. магистралями.

При весьма широких предположениях имеют место теоремы о магистрали, утверждающие, что всякая эффективная , независимо от начального состояния, с течением времени приближается к магистрали. Имеется большое число различных теорем о магистрали, различающихся определением эффективности или оптимальности, способом измерения расстояния до магистрали, типом сходимости, наконец, конечным или бесконечным временным интервалом.

Модель экономич. динамики, у к-рой производственные возможности задаются многогранным выпуклым конусом, наз. моделью Неймана. Частным случаем модели Неймана является замкнутая модель Леонтьева, или (по другой терминологии) замкнутый динамический межотраслевой баланс (термин "замкнутый" используется здесь как характеристика свойства экономики, состоящего в отсутствии невоспроизводимых продуктов), к-рый задается тремя матрицами с неотрицательными элементами Ф, Аи Впорядка Процесс тогда и только тогда, когда найдутся векторы v, такие, что выполнены неравенства:

Модель межотраслевого баланса получила большое распространение из-за удобства получения исходной информации для ее построения.

Модели экономич. динамики рассматриваются также в непрерывном времени. Одними из первых стали изучать как раз модели с непрерывным временем. В частности, ряд работ был посвящен простейшей однопродуктовой модели, задаваемой уравнением

где х - объем фондов, приходящихся на единицу трудовых ресурсов, с - потребление на душу населения, f - производственная функция (возрастающая, вогнутая). Неотрицательные функции удовлетворяющие этому уравнению, характеризуют допустимую траекторию. Для заданной функции полезности ии коэффициента дисконтирования mопределяется . Оптимальные траектории (и только они) удовлетворяют аналогу уравнения Эйлера

где - максимальное число, удовлетворяющее условию f(x) -с=х.

Модель Леонтьева также была сначала сформулирована в непрерывном времени в виде системы дифференциальных уравнений

где X - потоки продуктов, Аи В - матрицы текущих и капитальных затрат соответственно, С - потоки конечного потребления.

Эффективные и оптимальные траектории в моделях с непрерывным временем изучаются с помощью методов вариационного исчисления, оптимального управления, математич. программирования в бесконечномерных пространствах. Рассматриваются также модели, допустимые траектории в к-рых задаются дифференциальными включениями вида (х), где а - производственное отображение.

Рациональное поведение потребителей. Вкусы и цели потребителей, к-рые определяют их рациональное поведение, даются в виде нек-рой системы предпочтений в пространстве продуктов. А именно, для каждого потребителя iопределено точечно-множественное отображение где Z - нек-рое пространство ситуаций, в к-рых может оказаться потребитель в процессе выбора, X - множество векторов, доступных потребителю, В частности, Zможет включать в себя в качестве подпространства Содержательно множество состоит из всех векторов к-рые (строго) предпочитаются вектору хв ситуации z. Напр., отображение Р i может быть задано в виде функции полезности и, где и(х).показывает полезность от потребления набора продуктов х. Тогда

Пусть в описание ситуации z входят цены p. на все продукты и денежный доход потребителя d. Тогда есть множество наборов, к-рые потребитель может приобрести в ситуации z. Это множество наз. бюджетным. Рациональность поведения потребителя заключается в том, что он выбирает такие наборы хиз B i (z), для к-рых Пусть D(z) - множество наборов продуктов, выбираемых истребителем г в ситуации z; D i наз. отображен и-е м (или функцией в случае, когда D i (z) состоит из одной точки) спроса. Имеется ряд исследований, посвященных выяснению свойств отображений Р i , В i , D i . В частности, довольно подробно изучен случай, когда отображения Р i могут быть заданы в виде функций. Определены условия, при к-рых отображения В i и D i являются непрерывными. Особый интерес представляет изучение свойств функции спроса D i . Дело в том, что иногда удобнее считать в качестве первичных именно функции спроса D i , а не предпочтения P i , поскольку их легче построить по имеющейся информации о поведении потребителей. Напр., в экономике (торговая ) могут наблюдаться величины, приближенно оценивающие частные производные

где Яр - цена на продукт р, d - доход.

К теории рационального поведения потребителей примыкает теория группового выбора, имеющая дело, как правило, с дискретными вариантами. Обычно предполагается, что имеется конечное число участников группы и конечное число, напр., альтернативных вариантов. Задача состоит в выборе группового решения о выборе одного из вариантов при заданных отношениях предпочтения между вариантами для каждого участника. Групповой выбор обеспечивает различные схемы голосования, рассматриваются также аксиоматический и теоретико-игровой подходы.

Согласование интересов. Носителями интересов являются отдельные части экономич. системы, а также общество в целом. В качестве таких частей выступают потребители (группы потребителей): предприятия, министерства, территориальные органы управления, плановые и финансовые органы и т. п. Различают два взаимно переплетающихся подхода к проблеме согласования интересов - аналитический, или конструктивный, и синтетический, или дескриптивный. Согласно первому подходу в качестве исходного принимается глобальный критерий оптимальности (формализация интересов всего общества в целом). Задача состоит в том, чтобы вывести локальные (частные) критерии из общего, учитывая при этом частные интересы. При втором подходе исходными являются как раз частные интересы и задача заключается в объединении их в единую непротиворечивую систему, функционирование к-рой приводит к результатам, удовлетворительным с точки зрения всего общества в целом.

К первому подходу впрямую относятся декомпозиционные методы математич. программирования. Пусть, напр., в экономике имеется тпроизводителен и каждый производитель j задается множеством производственных возможностей Y j , где и является выпуклым компактом. Задана Vвсего общества в целом, где - вогнутая функция. Экономика должна быть организована таким образом, чтобы решалась задача выпуклого программирования: найти из условий

По теореме о характеристике эффективных способов производства существуют цены такие, что

для всех j,

Величина y (j) pинтерпретируется как прибыль j-го производителя при ценах р. Отсюда следует, что критерий максимизации прибыли у каждого из производителей не противоречит общей цели, если действующие цены определены соответствующим образом. Схемы, относящиеся ко второму подходу, получили большое развитие в рамках моделей экономич. равновесия.

Экономическое равновесие. Предполагается, что экономика состоит из отдельных частей, являющихся носителями собственных интересов: производителей, занумерованных индексами j = 1, ..., т, и потребителей, занумерованных индексами i=1, ..., п. Производитель j описывается множеством производственных возможностей и отображением задающим его систему предпочтений. Здесь Z - множество возможных состояний экономики, конкретизируемое ниже. Потребитель г описывается множеством возможных наборов продуктов, доступных для потребления, начальным запасом продуктов предпочтением и, наконец, функцией распределения доходов, где a i (z) показывает количество денег, поступающих потребителю i в состоянии z. Множество возможных цен в экономике есть Q. Тогда множество возможных состояний есть Бюджетное отображение B i определяется здесь так:

Состояние равновесия описанной экономики есть удовлетворяющее условиям


По существу состояние равновесия экономики совпадает с определением решения бескоалиционной игры многих лиц в смысле Неймана - Нэша с дополнительным условием, чтобы выполнялся баланс по всем продуктам. Существование состояния равновесия доказано при весьма общих условиях для исходной экономики. Гораздо более жесткие условия необходимо накладывать для того, чтобы состояние равновесия было оптимальным, т. е. доставляло нек-рой глобальной оптимизационной задаче с целевой функцией, зависящей от интересов потребителей. Напр., пусть Р i задано вогнутой непрерывной функцией a F j задано функцией


где Y j , Х i - выпуклые компакты,

Любое подмножество S={i 1 , ..., i r } индексов потребителей образует подэкономику исходной экономики, в к-рой каждому потребителю i s из S соответствует (один и только один) производитель, множество производственных возможностей к-рого есть

Функции распределения доходов при этом имеют вид

Состояние наз. сбалансированным, если

Говорят, что сбалансированное состояние z исходной экономики блокируется коалицией потребителей S, если в подэкономике, определяемой коалицией S, существует такое сбалансированное состояние что для s= 1, ..., r и хотя бы для одного индекса имеет место строгое неравенство. Ядром экономики наз. множество всех сбалансированных состояний, к-рые не блокируются никакой коалицией потребителей. Для экономики с описанными свойствами имеет место теорема: всякое состояние равновесия принадлежит ядру. Обратное неверно, однако найден ряд достаточных условий, при к-рых множество состояний равновесия и близки друг к другу или вообще совпадают. В частности, если число потребителей стремится к бесконечности и влияние каждого потребителя на состояние экономики становится все более малым, то множество состояний равновесия стремится к ядру. Совпадение ядра и множества состояний равновесия имеет место в экономике с бесконечным (континуальным) числом потребителей (теорема Аумана).

Пусть экономика является моделью рынка (т. е. отсутствуют производители), множество участников (потребителей) к-рой является замкнутым единичным отрезком , обозначаемым далее Т. Состояние экономики есть z= (x, p ), где хесть функция, отображающая Тв R + l , каждая компонента к-рой интегрируема по Лебегу на отрезке Т. Начальное продуктов между участниками задано функцией w, . таким образом сбалансированное состояние z таково, что Коалиция участников - это измеримое по Лебегу подмножество множества Т. Если подмножество имеет меру 0, то соответствующая наз. нулевой. Ядро - это множество всех сбалансированных состояний, к-рые не блокируются ни одной ненулевой коалицией. Состояние является равновесием, если для почти каждого участника i

Теорема Аумана утверждает, что в описанной экономике и множество состояний равновесия совпадают. Интерес представляет вопрос о структуре множества состояний равновесия, в частности когда это множество конечно или состоит из одной точки. Здесь имеет место теорема Дебре. Пусть множество моделей рынка где суть начальные запасы продуктов у участника i, вектор является параметром, определяющим конкретную модель из множества Отображение представляет собой функцию спроса для i-гo участника. Функции D 1 , ..., D n заданы (не меняются) для всего множества экономик W. Пусть W 0 , -совокупность экономик, у к-рых множество состояний равновесия бесконечно. Теорема Дебре утверждает, что если функции D 1 , ... , D n непрерывно дифференцируемы и отсутствуют точки насыщения хотя бы для одного из участников, то W 0 имеет (лебегову) меру в пространстве W.

О численных методах. М. э. имеет тесную связь с вычислительной математикой. Линейное , линейные экономич. модели оказали большое влияние на вычислительные методы линейной алгебры. По существу благодаря линейному программированию неравенства в вычислительной математике стали столь же употребительны, как и уравнения.

Трудным и многоплановым вопросом является вычисление экономич. равновесия. Напр., много работ посвящено условиям сходимости к равновесию системы дифференциальных уравнений

где р - вектор цен, F - функция избыточного спроса, т. е. функций спроса и предложения. Равновесные цены по определению, обеспечивают равенство спроса и предложения:

Функция избыточного спроса Fзадается либо непосредственно, либо через более первичные понятия соответствующей модели равновесия. С. Смейлом изучена существенно более общая динамич. система, чем (*), применительно к модели рынка; наряду с изменением во времени цен р рассмотрено изменение состояния х;при этом допустимая траектория удовлетворяет нек-рым дифференциальным включениям вида где К(р).и С(р) - множества возможных направлений изменения ри х, определенные через модель рынка.

Экономич. равновесие, решение игры, решение той или иной экстремальной задачи могут быть определены как неподвижные точки подходящим образом сформулированного точечно-множественного отображения. В рамках исследований по М. э. разрабатываются численные методы поиска неподвижных точек разных классов отображений. Наиболее известен метод Скарфа, к-рый является комбинацией идей леммы Шпернера и симплекс-метода решения задач линейного программирования.

Смежные вопросы. М. э. тесно связана со многими математич. дисциплинами. Иногда трудно определить, где границы между М. э. и математич. статистикой или выпуклым анализом, функциональным анализом, топологией и т. д. Можно указать, напр., на развитие теории положительных матриц, положительных линейных (и однородных) операторов, спектральных свойств суперлинейных точечно-множественных отображений под влиянием потребностей М. э.

Лит. :Нейман Дж., Моргенштерн О., Теория игр и экономическое поведение, пер. с англ., М., 1970; К а н т о р о в и ч Л. В., Экономический расчет наилучшего использования ресурсов, М., 1959; Никайдо X., Выпуклые структуры и математическая экономика, пер. с англ., М., 1972; М а к а р о в В. Л., Рубинов А. М., Математическая теория экономической динамики и равновесия, М., 1973; М и р к и н Б. Г., Проблема группового выбора [информации], М., 1974; Scarf H., The Computation of Economic Equilibria, L., 1973; Данциг Д ж., Линейное программирование, его применения и обобщения, пер. с англ., М., 1966; Smale S., "J. math. Economics", 1976, №2, p. 107-20. Л. В. Канторович, В. Л. Макаров.


Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

  • Экономический словарь

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Владимирский государственный университет

А.А. ГАЛКИН

МАТЕМАТИЧЕСКАЯ

ЭКОНОМИКА

Допущено Министерством образования и науки Российской Федерации в качестве учебника

для студентов высших учебных заведений, обучающихся по специальности «Прикладная информатика (в экономике)»

Владимир 2006

УДК 330.45: 519.85 ББК 65 В 631

Рецензенты:

Доктор технических наук, профессор зав. кафедрой автоматизированных информационных и управляющих систем Тульского государственного университета

В.А. Фатуев

Доктор технических наук, профессор зав. кафедрой информационных систем

Тверского государственного технического университета

Б.В. Палюх

Доктор экономических наук, профессор зав. кафедрой экономики и управления на предприятиях

Владимирского государственного университета

В.Ф. Архипова

Доктор физико-математических наук, профессор зав. кафедрой алгебры и геометрии Владимирского государственного университета

Н.И. Дубровин

Печатается по решению редакционно-издательского совета Владимирского государственного университета

Галкин, А. А.

Г16 Математическая экономика: учебник / А. А. Галкин; Владим. гос. ун-т. – Владимир: Изд-во Владим. гос. ун-та, 2006. – 304 с. – ISBN 5-89368-624-1.

Рассматривается широкий круг типовых оптимизационных задач, возникающих в экономике, и алгоритмов, позволяющих решать эти задачи. Даны методика формализации указанных задач и их классификация. Представлены методы решения детерминированных задач статической и динамической оптимизации. По каждому типу задач и алгоритмов приведены примеры, демонстрирующие технику практического использования этих алгоритмов, а также набор задач для самостоятельного решения.

Предназначен для студентов вузов, обучающихся по специальности 080801 – прикладная информатика (в экономике), а также студентов, магистрантов и аспирантов смежных специальностей очного, заочного обучения, лиц, получающих второе высшее образование, а также специалистов-практиков.

Табл. 80. Ил. 60. Библиогр.: 39 назв.

О Г Л А В Л Е Н И Е

Список принятых сокращений...........................................................................

ПРЕДИСЛОВИЕ..................................................................................................

ВВЕДЕНИЕ........................................................................................................

ПО РАБОТЕ С УЧЕБНИКОМ.........................................................................

Глава 1. ПОСТАНОВКА, ФОРМАЛИЗАЦИЯ

И КЛАССИФИКАЦИЯ ОПТИМИЗАЦИОННЫХ

ЗАДАЧ В ЭКОНОМИЧЕСКИХ СИСТЕМАХ .................................

и их формализация.............................................................................

§ 1.2. Классификация задач оптимизации.................................................

Глава 2. ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ.................

§ 2.1. Общая и каноническая задачи линейного программирования.....

§ 2.2. Графическое решение задач ЛП.......................................................

§ 2.3. Алгебраическое решение задач ЛП.

Сущность симплекс-метода.............................................................

§ 2.4. Отыскание начального опорного решения методом

искусственного базиса......................................................................

§ 2.5. Двойственные задачи линейного программирования....................

§ 2.6. Целочисленные задачи линейного программирования.................

§ 2.7. Замечания............................................................................................

Глава 3. ТРАНСПОРТНЫЕ ЗАДАЧИ ЛИНЕЙНОГО

ПРОГРАММИРОВАНИЯ ....................................................................

§ 3.1. Формулировка классической транспортной задачи (ТЗ)...............

§ 3.2. Решение классической транспортной задачи..................................

§ 3.3. Отыскание начального опорного плана методом

северо-западного угла (МСЗУ).........................................................

§ 3.4. Улучшение плана перевозок методом потенциалов......................

§ 3.5. Неклассические транспортные задачи.............................................

§ 3.6. Задачи о назначениях и распределительные задачи.......................

Задачи для самостоятельного решения......................................................

Глава 4. ЗАДАЧИ ОПТИМИЗАЦИИ, ПРЕДСТАВЛЯЕМЫЕ

НА ГРАФАХ ..........................................................................................

§ 4.1. Основные понятия теории графов....................................................

§ 4.2. Задача о кратчайшем пути в графе...................................................

§ 4.3. Задача о критическом пути в графе.................................................

§ 4.4. Задача о графе минимальной длины..............................................

§ 4.5. Задача о максимальном потоке в графе (сети)..............................

§ 4.6. Задача об оптимальном распределении заданного

потока в транспортной сети...........................................................

Контрольные вопросы..............................................................................

Задачи для самостоятельного решения...................................................

Глава 5. НЕЛИНЕЙНЫЕ ЗАДАЧИ СТАТИЧЕСКОЙ

ОПТИМИЗАЦИИ ...............................................................................

§ 5.1. Аналитическое решение нелинейных задач статической

оптимизации....................................................................................

§ 5.2. Численные методы решения одномерных задач

статической оптимизации...............................................................

§ 5.3. Численные методы многомерной безусловной оптимизации

с использованием производных...................................................

§ 5.4. Численные методы многомерной оптимизации

без использования производных...................................................

§ 5.5. Численные методы оптимизации при наличии ограничений......

Контрольные вопросы...............................................................................

Задачи для самостоятельного решения....................................................

Глава 6. ЗАДАЧИ ОПТИМАЛЬНОГО ДИНАМИЧЕСКОГО

УПРАВЛЕНИЯ И ДИНАМИЧЕСКОГО

ПРОГРАММИРОВАНИЯ ................................................................

§ 6.1. Понятие об управляемых динамических системах......................

§ 6.2. Формулировка классической задачи об оптимальном

динамическом управлении............................................................

§ 6.3. Формулировка классической задачи динамического

программирования (ДП).................................................................

§ 6.4. Принцип оптимальности Р. Беллмана...........................................

§ 6.5. Сущность метода ДП.......................................................................

§ 6.6. Основное функциональное уравнение ДП...................................

§ 6.8. Задача об оптимальном поэтапном распределении выделенных средств между предприятиями в течение

планового периода..........................................................................

§ 6.9. Задача об оптимальном плане замены оборудования..................

§ 6.10. Задача календарного планирования трудовых ресурсов...........

Контрольные вопросы...............................................................................

Задачи для самостоятельного решения....................................................

Глава 7. ОСНОВЫ ВАРИАЦИОННОГО ИСЧИСЛЕНИЯ

И ЕГО ПРИМЕНЕНИЕ ДЛЯ РЕШЕНИЯ ЗАДАЧ

ДИНАМИЧЕСКОЙ ОПТИМИЗАЦИИ ..........................................

§ 7.1. Основные понятия вариационного исчисления............................

§ 7.2. Классические задачи ВИ и соотношения для их решения..........

§ 7.3. Специфика задач оптимального динамического управления

и использование ВИ для их решения............................................

§ 7.4. Приближенные методы решения задач динамической

оптимизации средствами ВИ.........................................................

Контрольные вопросы..............................................................................

Глава 8. ПРИНЦИП МАКСИМУМА И ЕГО ПРИМЕНЕНИЕ

ДЛЯ СИНТЕЗА ОПТИМАЛЬНЫХ УПРАВЛЕНИЙ

В НЕПРЕРЫВНЫХ СИСТЕМАХ ...................................................

§ 8.1. Формулировка принципа максимума для непрерывных

систем...............................................................................................

§ 8.2. Классическая задача Эйлера...........................................................

§ 8.3. Задача оптимального управления с минимизацией затрат

энергии на управление.....................................................................

§ 8.4. Задача об оптимальном по быстродействию управлении..........

§ 8.5. Задачи об управлении линейной динамической системой

со свободным правым концом........................................................

§ 8.6. Задача об управлении линейной динамической системой

с минимизацией обобщенного квадратичного интегрального

§ 9.2. Управление линейной дискретной системой произвольного порядка с оптимизацией суммарного обобщенного

квадратичного критерия..................................................................

§ 9.3. Отыскание оптимального управления для дискретного

прототипа непрерывной динамической системы.........................

§ 9.4. Задача календарного планирования производства

и поставки продукции......................................................................

Контрольные вопросы..............................................................................

Задачи для самостоятельного решения к главам 7 – 9 .........................

ЗАКЛЮЧЕНИЕ...............................................................................................

ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ................................................

БИБЛИОГРАФИЧЕСКИЙ СПИСОК...........................................................

ПРИЛОЖЕНИЕ...............................................................................................

УКАЗАТЕЛЬ ОСНОВНЫХ ОБОЗНАЧЕНИЙ.............................................

Список принятых сокращений

ЦФ – целевая функция ОДР – область допустимых решений

ЛП – линейное программирование ЗЛП – задача ЛП КЗЛП – каноническая ЗЛП

ТЗ – транспортная задача ПО – пункты отправления, ПН – пункты назначения в ТЗ

МСЗУ – метод северо-западного угла МЗС – метод золотого сечения ДП – динамическое программирование ВИ – вариационное исчисление ПМ – принцип максимума; ДУ – дифференциальное уравнение

ПРЕДИСЛОВИЕ

В подготовке студентов различных технических и экономических специальностей и направлений значительное место занимает изучение типичных для соответствующей предметной области математических моделей и методов, позволяющих, оперируя этими моделями, объяснять поведение рассматриваемых систем, оценивать их характеристики, обоснованно принимать конструктивные, технологические, экономические, организационные и другие решения.

Освоение этих моделей и методов основывается на фундаменте, заложенном в довольно универсальной классической дисциплине, обычно называемой «Высшая математика». Математический аппарат, позволяющий решать типовые и наиболее важные для соответствующей сферы приложений задачи, изучается в специальных дисциплинах.

Для студентов, обучающихся по специальности «Прикладная информатика (в экономике)», одной из таких дисциплин является «Математическая экономика». В соответствии с действующим государственным образовательным стандартом (ГОС) в программу этой дисциплины включен большой объем учебного материала, связанного с проведением математических расчетов в сфере экономики. Этот материал делится на две части.

В первой части изучаются задачи финансового анализа, которые в ГОС предшествующего поколения рассматривались в специальной дисциплине – «Финансовая математика».

Вторая часть программы содержит с точки зрения математики более сложные задачи и методы, связанные с отысканием наилучших, т.е. оптимальных, решений различных задач, встречающихся в области прикладной экономики. Ранее студенты осваивали этот материал при изучении дисциплины «Теория оптимального управления в экономических системах».

Учебная программа дисциплины «Математическая экономика» содержит широкий спектр довольно сложных для изучения вопросов. Поскольку объем времени, выделенного для аудиторных занятий по этой дисциплине, довольно небольшой, особое значение приобретает самостоятельная работа студентов с учебной литературой.

Следует отметить, что за последние 30 лет в нашей стране было издано много различных монографий, учебников и учебных пособий по математическим методам, применяемым в экономике. Однако при работе с ними у студентов возникают серьезные затруднения. Во-первых, многие из этих книг сейчас практически недоступны для студентов, так как либо отсутствуют в библиотеках вузов, либо имеются в единичных экземплярах. Во-вторых, для изучения всего предусмотренного программой материала одного учебника недостаточно, а в разных книгах, как правило, используются разный стиль изложения, разные обозначения. Нередко уровень изложения материала недоступен «реальному» студенту. В-третьих, при организации учебного процесса по дисциплинам математического характера принципиально важное значение имеет приобретение студентами практических навыков в использовании изучаемых методов, а для этого необходимы задачи для самостоятельного решения. Большинство учебных пособий по рассматриваемой тематике содержит примеры и задачи для иллюстрации техники применения излагаемых методов, но их недостаточно для того, чтобы выдать всем студентам обычной учебной группы индивидуальные задания.

Предлагаемый учебник предназначен для изучения второй, более сложной части дисциплины «Математическая экономика», в которой рассматриваются оптимизационные задачи, возникающие в экономике, и алгоритмы их решения. Он подготовлен с учетом изложенных выше обстоятельств.

В книге приведены формулировки типовых оптимизационных задач, возникающих в экономической сфере, осуществлена их формализация, изложена сущность методов и алгоритмов, позволяющих выполнять решение с иллюстрацией техники этих алгоритмов на конкретных примерах. Кроме того, по каждой теме представлен достаточно большой набор задач для самостоятельного решения, позволяющий каждому студенту дать свое индивидуальное задание.

Из огромного разнообразия возможных оптимизационных задач и предлагаемых современной наукой методов для включения в этот учебник выбраны детерминированные задачи и алгоритмы статической и динамической оптимизации. Из-за ограниченного объема книги задачи оптимизации с неопределенностями, в том числе вероятностно-статистические, интервальные, нечеткие и другие задачи и модели, а также задачи векторной оптимизации, не рассматриваются.

Книга включает девять глав. В первой даны примеры оптимизационных задач экономического характера, на которых продемонстрирована методика формализации, т.е. получения математической модели решаемой задачи, приведена классификация оптимизационных задач.

Главы вторая, третья и четвертая посвящены линейным задачам статической оптимизации. В второй главе изложены задачи и методы линейного программирования, отдельно в третьей – рассмотрены транспортные задачи, а в четвертой – оптимизационные задачи, которые интерпретируются на графах. Для каждой задачи представлен наиболее эффективный метод (алгоритм) решения и дан пример, демонстрирующий технику практического использования этого алгоритма. В пятой главе изложены аналитические и численные методы решения нелинейных задач статической оптимизации при отсутствии и наличии ограничений.

Динамические задачи оптимизации, обычно называемые задачами оптимального управления, рассмотрены в главах с шестой по девятую. В шестой главе дано общее представление о динамических системах непрерывного и дискретного типа, сформулирована классическая задача об оптимальном управлении и динамическом программировании (ДП), изложена сущность ДП и на различных примерах экономического характера показана техника его практического применения. В седьмой главе изложены основы вариационного исчисления, в восьмой – принцип максимума для непрерывных систем, а в девятой – для дискретных систем. В каждой из этих глав большое внимание уделено анализу различных частных задач и примеров, иллюстрирующих методику практического использования расчетных соотношений.

В конце каждой из глав с первой по шестую приведены задачи для самостоятельного решения. В конце девятой главы даны задачи для самостоятельного решения, посвященные методам оптимального динамического управления.

Особой проблемой, для решения которой автору в процессе работы над книгой потребовались значительные усилия, явилось то, что некоторые методы и алгоритмы в оригинальной литературе изложены так, что студентам нематематического, а информационно-экономического профиля разобраться в них довольно трудно. Поэтому необходимо было найти возможности для адаптации соответствующего теоретического материала к реальному уровню подготовки студентов, на которых ориентирована книга.

Кроме того, автор стремился при изложении большого количества существенно отличающихся задач и методов в максимальной степени выдержать единый стиль, характер, систему изложения материала. Хотелось бы надеяться, что это в определенной мере удалось осуществить.

При подготовке учебника был использован материал лекций и практических занятий по дисциплинам «Методы оптимизации», «Теория управления», «Теория оптимального управления в экономических системах» и «Математическая экономика», которые автор преподавал в течение 25 лет во Владимирском государственном университете (ВлГУ). На этих занятиях большая часть теоретического материала и задач для самостоятельного решения прошла апробацию. Электронная версия учебника включена в информационные ресурсы электронной библиотеки ВлГУ.

Несмотря на то что учебник подготовлен для студентов специальности «Прикладная информатика (в экономике)», несомненно, он может оказаться полезен студентам, магистрантам, аспирантам и специалистам других профилей, поскольку оптимизационные задачи возникают всюду. Не случайно говорят, что «в природе нет ничего, в чем нельзя было бы усмотреть смысл какого-либо максимума или минимума».

Он будет благодарен всем тем, кто воспользуется книгой и сообщит свое мнение о ее содержании, возможно, о недостатках или неточностях. Для этого можно воспользоваться e_mail: [email protected] .

Работа над книгой с некоторыми перерывами велась около 10 лет, но она могла затянуться на неопределенный срок, если бы не оперативная и высококвалифицированная помощь в работе над рукописью, которую оказала аспирант И.В. Лагерь. За это автор выражает ей особую благодарность.